| Volume 17, number 1, 2017 | http://www.ijpsy.com | Volumen 17, número 1, | |---------------------------|----------------------|-----------------------| |---------------------------|----------------------|-----------------------| #### Serie: Mindfulness in Clinical Psychology, I Serie: Mindfulness en Psicología Clínica, I 2017 | Jens C. Thimm | 3-17 | Relationships between Early Maladaptive Schemas,
Mindfulness, Self-compassion, and
Psychological Distress. | |---|-------|---| | Anissia Brown
Rodrigo Becerra | 19-37 | Mindfulness for Neuropathic Pain: A Case Study. | | Héctor Enríquez
Natalia Ramos
Oscar Esparza | 39-48 | Impact of the Mindful Emotional Intelligence Program on Emotional Regulation in College Student. | | Miguel Quintana
Héctor González Ordi
Rafael Jódar Anchía | 49-56 | Mindfulness, personalidad y sugestionalibilidad: estudio correlacional exploratorio. [Mindfulness, Personality and Suggestibility: A Correlational Study.] | | Luis Manuel Blanco Donoso
Carlos García Rubio
Bernardo Moreno Jiménez
María Luisa R. de la Pinta
Santiago Moraleda Aldea
Eva Garrosa Hernández | 57-73 | Intervención breve basada en ACT y mindfulness: estudio piloto con profesionales de Enfermería en UCI y Urgencias. [Brief Intervention Based on ACT and Mindfulness: Pilot Study with Nursing Staff in Intensive Care Unit and Emergency Services.] | ## Research Articles // Artículos de investigación | Raquel Úbeda
Pilar Tomás
Carmen Dasí
Juan Carlos Ruiz
Inmaculada Fuentes | 77-86 | Forma abreviada de la WAIS-IV: estudio piloto en pacientes con esquizofrenia. [WAIS-IV Short Form: A Pilot Study with Schizophrenia Patients.] | |--|---------|--| | Bartolomé Marín Romero
Jesús Gil Roales-Nieto
Emilio Moreno San Pedro | 87-95 | Variables relacionadas con el éxito en el autoabandono del tabaquismo. [Variables Related to Success in Smoking Self-quitting.] | | Francisco J. Ruiz
Mª Belén García Martín
Juan C. Suárez Falcón
Paula Odriozola González | 97-105 | The Hierarchical Factor Structure of the Spanish Version of Depression Anxiety and Stress Scale -21. | | Zaida Hinojo Abujas
Vicente Pérez Fernández
Andrés García García | 107-118 | The Formation of Equivalence Classes in Adults without Training in Negative Relations between Members of Different Classes. | #### Discussion and Review Articles // Artículos teóricos y de revisión | Pedro M. Ogallar | 121-136 | Attentional Perspectives on Context-dependence of | |---------------------------|---------|---------------------------------------------------| | Manuel M. Ramos Álvarez | | Information Retrieval. | | José A. Alcalá | | | | María M. Moreno Fernández | | | | Juan M. Rosas | | | #### Notes and Editorial Information // Avisos e información editorial | Editorial Office | 139-142 | Normas de publicación-Instructions to authors. | |------------------|---------|-----------------------------------------------------| | Editorial Office | 143 | Cobertura e indexación. [Abstracting and Indexing.] | ISSN 1577-7057 © 2017 Asociación de Análisis del Comportamiento, España 2017 Volume 17, number 1 2017 Volumen 17, número 1 # IJP&PT # International Journal of Psychology & Psychological ## THERAPY EDITOR Miguel Rodríguez Valverde Universidad de Jaén, España REVIEWING EDITORS Mónica Hernández López Universidad de Jaén España Francisco Ruiz Jiménez Fundación Universitaria Konrad Lorenz Dermot Barnes-Holmes Universiteit Gent Belgium ASSOCIATE EDITORS J. Francisco Morales UNED-Madrid España Mauricio Papini Christian Texas University USA ISSN: 1577-7057 Miguel Ángel Vallejo Pareja UNED-Madrid España Kelly Wilson University of Mississipi USA Assistant Editors Adolfo J. Cangas Díaz Emilio Moreno San Pedro Universidad de Almería, España Universidad de Huelva, España Managing Editor Francisco J. Molina Cobos Universidad de Almería, España EDITORIAL OFFICE/SECRETARÍA DE EDICIÓN Adrián Barbero Rubio Universidad de Almería, España http://www.ijpsy.com ## IJP&PT ## International Journal of Psychology & Psyhological Therapy Editor: Miguel Rodríguez Valverde, Universidad de Jaén, España Senior Editor: Santiago Benjumea, Universidad de Sevilla, España #### **Reviewing Editors** #### Assistant Editors Mónica Hernández López, Universidad de Jaén, España Francisco Ruiz Jiménez, Fundación Universitaria Konrad Lorenz, Colombia Adolfo J. Cangas Díaz, Universidad de Almería, España Emilio Moreno San Pedro, Universidad de Huelva, España Associate Editors Dermot Barnes-Holmes, Universiteit Gent, Belgique-België Francisco Morales, UNED, Madrid, España Mauricio Papini, Christian Texas University, USA Miguel Angel Vallejo Pareja, UNED, Madrid, España Kelly Wilson, University of Mississipi, USA Managing Editor Francisco J. Molina Cobos, Universidad de Almería, España Secretaría de Edición/Editorial Office Adrián Barbero Rubio Universidad de Almería, España #### Consejo Editorial/Board of Editors Yolanda Alonso Universidad de Almería, España Erik Arntzen University of Oslo, Norway Mª José Báguena Puigcerver Universidad de Valencia, España Yvonne Barnes-Holmes National University-Maynooth, Ireland William M. Baum University of New Hampshire, USA Gualberto Buela Casal Universidad de Granada, España Francisco Cabello Luque Universidad de Murcia, España José Carlos Caracuel Tubío Universidad de Sevilla, España Gonzalo de la Casa Universidad de Sevilla, España Charles Catania University of Maryland Baltimore County, USA Juan Antonio Cruzado Universidad Complutense, España Victoria Diez Chamizo Universidad de Barcelona, España Michael Dougher University of New Mexico, USA Mª Paula Fernández García Universidad de Oviedo, España Perry N Fuchs University of Texas at Arlington, USA Andrés García García Universidad de Sevilla, España José Jesús Gázquez Linares Universidad de Almería, España Inmaculada Gómez Becerra Universidad de Almería, España Luis Gómez Jacinto Universidad de Malaga, España M Victoria Gordillo Álvarez-Valdés Universidad Complutense, España Celso Goyos Universidade de Sao Paulo, Brasil David E. Greenway University of Southwestern Louisiana, USA Patricia Sue Grigson Pennsylvania State College of Medicine, USA Steven C. Hayes University of Nevada-Reno, USA Linda Hayes University of Nevada-Reno, USA Phillip Hineline Temple University, USA Per Holth University of Oslo, Norway Robert J. Kohlenberg University of Washington, Seattle, USA María Helena Leite Hunzinger Universidade de Sao Paulo, Brasil Julian C. Leslie University of Ulster at Jordanstown, UK Juan Carlos López García Universidad de Sevilla, España Fergus Lowe University of Wales, Bangor, UK Armando Machado Universidade do Miño, Portugal G. Alan Marlatt University of Washington, Seattle, USA Jose Marques Universidade do Porto, Portugal Olga Gutiérrez Martínez Hospital Universitario de Vigo, España Helena Matute Universidad de Deusto, España Ralph R. Miller State University of New York-Binghamton, USA Fernando Molero UNED, Madrid, España Rafael Moreno Universidad de Sevilla, España Ignacio Morgado Bernal Universidad Autónoma Barcelona, España Edward K. Morris University of Kansas-Lawrence, USA Lourdes Munduate Universidad de Sevilla, España Alba Elisabeth Mustaca Universidad de Buenos Aires, Argentina José I. Navarro Guzmán Universidad de Cádiz, España Jordi Obiols Universidad Autónoma de Barcelona, España Sergio M. Pellis University of Lethbridge, Canada Ricardo Pellón UNED, Madrid, España Wenceslao Peñate Castro Universidad de La Laguna, España Víctor Peralta Martín Hospital V. del Camino, Pamplona, España M. Carmen Pérez Fuentes Universidad de Almería, España Marino Pérez Álvarez Universidad de Oviedo, España Juan Preciado City University of New York, USA Emilio Ribes Iniesta Universidad Veracruzana, México Josep Roca i Balasch INEF de Barcelona, España Armando Rodríguez Universidad de La Laguna, España Jesús Rosales Ruiz University of North Texas, USA Juan Manuel Rosas Santos Universidad de Jaén, España Kurt Saltzinger Hofstra University, USA M. Carmen Santisteban Universidad Complutense, España Mark R. Serper Hofstra University, USA Arthur W. Staats University of Hawaii, USA Carmen Torres Universidad de Jaén, España Peter J. Urcuioli Purdue University, USA Sonsoles Valdivia Salas Universidad de Zaragoza, España Guillermo Vallejo Seco Universidad de Oviedo, España Julio Varela Barraza Universidad de Guadalajara, México Juan Pedro Vargas Romero Universidad de Sevilla, España Graham F. Wagstaff University of Liverpool Stephen Worchel University of Hawaii, USA Edelgard Wulfert New York State University, Albany, USA Thomas R. Zentall University of Kentucky, USA International Journal of Psychology & Psychological Therapy is a four-monthly interdisciplinary publication open to publish original empirical articles, substantive reviews of one or more area(s), theoretical reviews, or reviews or methodological issues, and series of interest to some of the Psychology areas. The journal is published for the Asociación de Análisis del Comportamiento (AAC), indexed and/or abstracted in SCOPUS, Google Scholar Metrics, ISOC (CINDOC, CSIC), PSICODOC, Catálogo Latindex, IN-RECS (Index of Impact of the Social Sciences Spanish Journals), PsycINFO, Psychological Abstracts, ClinPSYC (American Psychological Association), ProQuest, PRISMA, EBSCO Publishing Inc., DIALNET, and RedALyC. International Journal of Psychology & Psychological Therapy es una publicación interdisciplinar cuatrimestral, publicada por la Asociación de Análisis del Comportamiento (AAC), abierta a colaboraciones de carácter empírico y teórico, revisiones, artículos metodológicos y series temáticas de interés en cualquiera de los campos de la Psicología. Es publicada por la Asociación de Análisis del Comportamiento (AAC) y está incluida en las bases y plataformas bibliográficas: SCOPUS, Google Scholar Metrics, ISOC (CINDOC, CSIC), PSICODOC (Colegio Oficial de Psicólogos) Latindex, IN-RECS (Índice de Impacto de Revistas Españolas de Ciencias Sociales, PsycINFO (American Psychological Association) ClinPSYC, ProQuest, PŔISMA, EBSCO Publishing Inc., DIALNET, y RedALyC (Red de Revistas Científicas de América Latina y El Caribe, España y Portugal). ## The Hierarchical Factor Structure of the Spanish Version of Depression Anxiety and Stress Scale -21 Francisco J. Ruiz*, Mª Belén García Martín Fundación Universitaria Konrad Lorenz, Colombia Juan C Suárez Falcón Universidad Nacional de Educación a Distancia, España Paula Odriozola González Universidad de Valladolid, España #### ABSTRACT The Depression Anxiety and Stress Scale-21 (DASS-21) is one of the most widely used self-reports for the measurement of emotional symptoms. However, some controversy remains concerning its factor structure. Additionally, more data of the psychometric properties of the Spanish version of the DASS-21 are needed. The aim of this study was to explore the hierarchical factor structure of the DASS-21 and to further analyze its psychometric properties in Spain and Colombia. Four samples with a total of 2980 participants completed the Spanish version of the DASS-21. Two of the samples were composed of undergraduates of each country and the other two samples were recruited online. The results strongly supported a hierarchical factor structure of the DASS-21 consisting of three first-order factors (depression, anxiety, and stress) and one second-order factor (emotional symptoms). Initial evidence of measurement invariance was found for country (Spain vs. Colombia) and sample (undergraduates vs. online). The DASS-21 showed good psychometric properties in all samples. The DASS-21 seems to be a good option to measure emotional symptoms in Spain and Colombia, and its hierarchical factor structure indicates that it provides general and specific measures of emotional symptoms that are theoretically meaningful. Key words: depression, anxiety, DASS-21, factor hierarchical structure, emotional symptoms. How to cite this paper: Ruiz FJ, García-Martín MB, Suárez-Falcón JC, & Odriozola-González P (2017). The Hierarchical Factor Structure of the Spanish Version of Depression Anxiety and Stress Scale -21. *International Journal of Psychology & Psychological Therapy, 17*, 93-101. #### Novelty and Significance What is already known about the topic? - The DASS-21 was designed to maximize the discrimination between the subjective perception of anxiety and depression. - The DASS-21 has shown a three factor structure: depression, anxiety, and stress. What this paper adds? - The DASS-21 showed good psychometric properties in Spanish version. - The DASS-21 showed good psycholinetre properties in opamism version. The DASS-21 showed a hierarchical factor structure with three first-order factors and a second-order factor. Depression and anxiety disorders are the most frequent psychiatric complaints and the first cause of disability worldwide (e.g., Arrieta, Díaz, & González, 2013). These disorders have been classically considered as different diagnostic categories. However, a complex debate has occurred during the last decades with regard to the differentiation of depression and anxiety symptoms for two reasons. Firstly, depression and anxiety disorders present a high rate of comorbidity (e.g., Alonso, Angermaryer, ^{*} Correspondence concerning this article: Francisco J. Ruiz, Fundación Universitaria Konrad Lorenz, Carrera 9 bis, Nº 62-43, Bogotá, Colombia. Email: franciscoj.ruizj@konradlorenz.edu.co. Bernet, & Bruffaerst, 2004), with depression, generalized anxiety disorder (GAD), and panic disorder being the most comorbid disorders (Beuke, Fischer, & McDowall, 2003; Jiménez, Bojórquez, Blas, Landa, & Caraveo, 2005). Secondly, the instruments dedicated to measure depression and anxiety symptoms usually show very strong correlations with each other (Agudelo, Gómez, & López, 2014). These two interrelated facts complicate the differential assessment of depression and anxiety disorders (Mineka, Watson, & Clark, 1998; Rodríguez, Bruce, Pagano, Spencer, & Keller, 2004). Given this state of affairs, some authors have opted for designing instruments that clearly differentiate between anxiety and depression symptoms. One of these efforts is represented by the Depression Anxiety and Stress Scale (DASS; Lovibond & Lovibond, 1995), which was created with the aim of maximizing the discrimination between the subjective perception of anxiety and depression. The DASS is a 42-items, 4-point Likert-type scale in which respondents have to state how much some negative emotional states applied to them during the last week. Although the first intention of the DASS developers was to differentiate between depression and anxiety, factorial studies yielded a third factor that was called Stress. Accordingly, the DASS consists of three subscales: Depression, which measures low affect, dysphoria, hopelessness, sadness and anhedonia; Anxiety, which measures physiological activation and the subjective experience of anxiety; and Stress, which measures symptoms more related to GAD such as tension, irritability, nervousness, and impatience. Subsequent studies conducted by Antony, Bieling, Cox, Enns, and Swinson (1998) focused on developing a reduced, 21-item version of the DASS: the DASS-21. These studies confirmed the three-factor structure of the DASS and DASS-21 both in clinical and nonclinical groups. Likely, due to its brevity and specificity, the DASS-21 has become a very popular measure of emotional symptoms. Accordingly, during the last few years, interest in analyzing the psychometric properties and factor structure of the DASS-21 in different samples (clinical vs. nonclinical samples) and languages has grown. Overall, research has shown that the DASS-21 has good psychometric properties in different languages (e.g., Antúnez & Vinet, 2012; Fonseca, Paíno, Lemos, & Muñiz, 2010). With regard to the factor structure of the DASS-21, confirmatory factor analyses (CFA) have yielded somewhat mixed results. Some studies have found that two-factor solutions with Depression and Stress items loading in the same factor or with Anxiety and Stress items loading together (Duffy, Cunningham, & Moore, 2005) showed the best fit to the data. Most of the studies have found, however, that the three-factor solution described in Antony et al. (1998) shows the best fit to the data (e.g., Antúnez & Vinet, 2012; Daza, Novy, Stanley, & Averill, 2002; Fonseca *et al.*, 2010; Norton, 2007; Tully, Zajac, & Venning, 2009). Following the rationale of the original study (Lovibond & Lovibond, 1995), some authors have tried to test whether a hierarchical factor structure consisting of one general factor (i.e., Emotional Symptoms or Negative Affectivity) and three correlated, first-order factors (Depression, Anxiety, and Stress) showed a better fit to the data than the solution with only three correlated factors, using a CFA methodology (e.g., Antony et al., 1998; Daza et al., 2002; Fonseca Pedrero et al., 2010). The results in all these studies were that goodness of fit of the two competing models were identical. However, as stated by Brown (2015), when the first-order model has three factors, a solution that specifies a single higher order factor is just-identified and both models produce the same goodness-of-fit. As it is impossible to compare the fit of the three correlated factors model and the hierarchical factor model with one general factor and three correlated first-order factors through a CFA methodology, the current study aims to analyze this issue through the Schmid-Leiman transformation (Schmid & Leiman, 1957) as an alternative to the nested factors modeling. These analyses were conducted in four samples of two Spanish-speaking countries: Spain and Colombia. Whereas the DASS-21 has shown good psychometric properties in Spanish undergraduates (Fonseca *et al.*, 2010), it has not been tested in Colombian samples. Accordingly, a secondary aim of this study was to extend the data on the psychometric properties of the DASS-21 in Spain and to explore them for the first time in Colombia. Four samples with a total of 2980 participants were analyzed. #### Метнор #### **Participants** - Sample 1. Consisted of 511 undergraduates (age range 18-68, M= 26.74, SD= 10.31) from four Spanish universities. Forty-four percent of the sample was studying Psychology. The other studies included Speech Therapy, Law, and Physics. Sixty-one percent were women. Of the overall sample, 19.4% of participants had received psychological or psychiatric treatment at some time, but only 4.3% were currently in treatment. Also, 3.7% of participants were taking some psychotropic medication. - Sample 2. Consisted of 762 undergraduates (age range 18-63, M= 21.16, SD= 3.76) from seven universities of Bogotá. Forty-six percent of the sample was studying Psychology. The other studies included Law, Engineering, Philosophy, Communication, Business, Medicine, and Theology. Sixty-two percent were women. Of the overall sample, 26% of participants had received psychological or psychiatric treatment at some time, but only 4.3% were currently in treatment. Also, 2.9% of participants were taking some psychotropic medication. - Sample 3. Consisted of 813 participants (71% females) with age ranging between 18 and 82 years (*M*= 34.74, *SD*= 10.87). The relative educational level of participants was: 34.5% primary studies (i.e., compulsory education) or mid-level graduates (i.e., high school or vocational training), 42.7% were undergraduates or college graduates, and 22.3% were currently studying or had a postgraduate degree. They responded to an anonymous Internet survey distributed through social media. All of them were Spaniards. Forty-four percent reported having received psychological or psychiatric treatment at some time, but only 16.8% were currently in treatment. Also, 13% of participants reported using psychotropic medication. - Sample 4. Consisted of 894 participants (67.4% females) with age ranging between 18 and 88 years (M= 29.16, SD= 10.13). The relative educational level of the participants was: 21.3% primary studies (i.e., compulsory education) or mid-level study graduates (i.e., high school or vocational training), 62.5% were undergraduates or college graduates, and 16.2% were currently studying or had a postgraduate degree. They responded to an anonymous internet survey distributed through social media. All of them were Colombian. Forty-seven percent reported having received psychological or psychiatric treatment at some time, but only 9.4% were currently in treatment. Also, 5.7% of participants reported using psychotropic medication. #### Procedure All participants provided informed consent previous to the inclusion in the study. In Samples 1 and 2, the administration of the questionnaire package was conducted in the participants' classrooms at the beginning of a regular class. Participants in Samples 3 and 4 responded to an anonymous Internet survey distributed through social media. #### Instruments Depression, Anxiety, and Stress Scales 21 (DASS-21; Antony et al., 1998). The DASS-21 is a 21-item, 4-point Likert-type scale (3= "applied to me very much, or most of the time"; 0= "did not apply to me at all") consisting of sentences describing negative emotional states. It contains three subscales (Depression, Anxiety, and Stress) and has shown good internal consistency and convergent and discriminant validity. We administered the Spanish version of the DASS-21 by Daza et al. (2002), which showed good psychometric properties with Hispanic participants. This version also showed good psychometric properties in Spanish undergraduates (Fonseca Pedrero et al., 2010). #### Data analysis Prior to conducting factor analyses, all samples were examined, searching for missing values. Only 13 values of the DASS-21 were missing (one for Items 4, 6, 10, 12, 18, and eight for Item 21). These data were imputed using the matching response pattern method of LISREL© (version 8.71, Jöreskog & Sörbom, 1999), which was the software used to conduct the confirmatory factor analyses (CFA). In this imputation method, the value to be substituted for the missing value of a single case is obtained from another case (or cases) having a similar response pattern over the 21 items of the DASS-21. The responses of 10 Spanish undergraduates were eliminated due to null vector response pattern. Confirmatory factor analyses were computed to compare the following five factor models of the DASS-21 in the overall sample and in each country: (a) a one-factor model; (b) a two-correlated-factor model with depression and stress items loading on the same factor; (c) a two-correlated-factor model with anxiety and stress loading on the same factor; (d) a three-correlated-factor model; and (e) the previous model with a general, second-order factor. As previously commented, when the first-order model has three factors, a solution that specifies a single higher order factor is just-identified, and both models produce the same goodness-of-fit (Brown, 2015). Accordingly, as in other studies (e.g., Herzberg et al., 2012), the Schmid-Leiman transformation (Schmid & Leiman, 1957) was computed to assess the presence of a higher order factor in this case (see below). Because the DASS-21 uses a Likert-type scale measured on an ordinal scale, a robust unweighted least squares (ULS) estimation method using polychoric correlations was used to conduct CFA. Goodness of fit was examined by computing the following fit indexes: (a) the root mean square error of approximation (RMSEA); (b) the comparative fit index (CFI); (c) the non-normed fit index (NNFI); (d) the expected cross-validation index (ECVI); and (e) the standardized root mean square residual (SRMR). According to Kelloway (1998) and Hu and Bentler (1999), RMSEA values of .10 represent a good fit, and values below .05 represent a very good fit to the data. For the SRMR, values below .08 represent a reasonable fit, and values below .05 a good fit. With respect to the CFI and NNFI, values above .90 indicate well-fitting models, and above .95 represent a very good fit to the data. The ECVI was computed to compare the goodness of fit of the different models. As commented above, and following the recommendations of Gignac (2007), the Schmid-Leiman transformation (Schmid & Leiman, 1957) was conducted as an alternative to the nested factors modeling to explore the factor loadings of the items and the extracted variance accounted for by the general factor in the fifth model (i.e., three correlated first-order factors and a second-order factor). This statistical procedure performs a secondary exploratory factor analysis (EFA) using the latent factor intercorrelations obtained from the previous EFA and facilitates interpretation of primary factors (items) relative to higher order factors by computing direct relations between primary variables and second-order factors. Likewise, the proportion the general factor accounts for of the extracted variance is indicative of the presence of a general factor (range 40-50%; Gorsuch, 1983). The factor analysis was conducted with Factor 9.2© (Lorenzo Seva & Ferrando, 2006), adopting an ULS estimation method and using polychoric correlations. Additionally, the syntax developed by Wolf and Preising (2005) for SPSS was used to compute the total extracted variance accounted for by the higher order factor. Additional CFAs were performed to test for measurement invariance across countries (Spain vs. Colombia) and type of sample (undergraduates vs. online). In so doing, the relative fit of two models was compared. The first model (the multiple-group baseline model) allowed the 21 unstandardized factor loadings to vary across countries and type of sample, whereas the second model (constrained model) placed equality constraints (i.e., invariance) on those loadings. Equality constraints were not placed on estimates of the factor variances because these are known to vary across groups even when the indicators are measuring the same construct in a similar manner (Kline, 2005). The parsimonious model (constrained model) was selected if the following four criteria suggested by Cheung and Rensvold (2002) and Chen (2007) were met: (a) the constrained model did not generate a significantly worse fit than the unconstrained model (the multiple-group baseline model) according to the chi-square test; (b) the difference in RMSEA (ΔRMSEA) was lower than .01; (c) the difference in CFI (ΔCFI) was greater than -.01; and (d) the difference in NNFI (ΔNNFI) was greater than -.01. Lastly, Cronbach's alphas were computed on SPSS 19 to explore the internal consistency of the DASS-21 in all samples. Descriptive data were also calculated for each sample. #### RESULTS Table 1 presents the goodness-of-fit indexes of the five factor models in the overall sample and in each country. The results were very similar in the three cases. The one-factor model showed an acceptable fit, but fit was better for the two, two first-order correlated factor models. However, the correlated three-factor model showed the best fit to the data. As expected, the fit of the correlated three-factor model plus a general factor was identical to the model with only three correlated factors. Table 2 shows the explained variance of the second-order factor in the model with three correlated first-order factors according to the Schmid-Leiman transformation. This general factor accounted for more than 70% of the variance in all cases, a proportion clearly above the range considered as indicative of the presence of a general factor (40%-50%; Gorsuch, 1983). Additionally, all items seemed to represent the general factor because they showed loadings above .30 (Tabachnick & Fiddell, 2007). Table 3 shows the fit indices for measurement invariance tests for the hierarchical model with three correlated factors. As can be seen, the multiple-group baseline models Table 1. Goodness-of-Fit Indexes for the Factor Models in the Overall Sample and in Spain and Colombia. | N | Model | S-B
χ^2 | CFI | RMSEA
(90% CI) | SRMR | NNFI | ECVI
(90% CI) | |---------------------------|---|------------------|-----|----------------------|------|------|----------------------| | | 1. One factor | 3478.34
(189) | .98 | .076
(.074, .079) | .053 | .98 | 1.20
(1.13, 1.26) | | | 2. Two factors
(depression + stress) | 2845.51
(188) | .98 | .069
(.067, .071) | .050 | .98 | .98
(.93, 1.04) | | Overall Sample
N= 2980 | 3. Two factors (anxiety + stress) | 1817.51
(188) | .99 | .054
(.052, .056) | .042 | .99 | .64
(.59, .69) | | 11- 2500 | 4. Three factors | 1453.49 | .99 | .048 | .038 | .99 | .52
(.48, .56) | | | 5. Three factors +
General Factor | 1453.49
(186) | .99 | .048 | .038 | .99 | .52
(.48, .56) | | | 1. One factor | 1733.74
(189) | .98 | .070 | .053 | .98 | 1.10 (1.02, 1.18) | | a | 2. Two factors
(depression + stress) | 1590.73
(188) | .98 | .067 | .051 | .98 | 1.01
(.94, 1.09) | | Colombian
Samples | 3. Two factors (anxiety + stress) | 1138.21 (188) | .99 | .055 | .046 | .99 | 0.74 (.68, .81) | | <i>N</i> = 1656 | 4. Three factors | 983.55
(186) | .99 | .051
(.048, .054) | .043 | .99 | 0.65
(.59, .71) | | | 5. Three factors +
General Factor | 983.55
(186) | .99 | .051 | .043 | .99 | 0.65
(.59, .71) | | | 1. One factor | 2319.14 | .97 | .092 | .062 | .97 | 1.82
(1.70, 1.94) | | Spanish
Samples | 2. Two factors (depression + stress) | 1601.89
(188) | .98 | .075 | .056 | .98 | 1.28 (1.18, 1.38) | | | 3. Two factors (anxiety + stress) | 1014.74
(188) | .99 | .058 | .045 | .99 | 0.83 | | <i>N</i> = 1324 | 4. Three factors | 770.49
(186) | .99 | .049 | .041 | .99 | 0.65 | | | 5. Three factors +
General Factor | 770.49
(186) | .99 | .049 | .041 | .99 | 0.65 | Table 2. Percentage of Variance Explained by the General Factor in the Samples by Means of the Schmid-Leiman Transformation | Samples by Wealis of the Schillid-Lennah Transformation. | | | | | | | |--|-----------------------|-------------------------|--|--|--|--| | Samples | Variance explained by | Variance explained by | | | | | | _ | the General Factor | the first-order factors | | | | | | Overall | 75.1% | 24.9% | | | | | | Colombia | 73.8% | 26.2% | | | | | | Spain | 73.6% | 26.4% | | | | | Table 3. Measurement Invariance across Countries (Colombia vs. Spain) and Samples (Undergraduates vs. Online) for the Hierarchical Model with Three Correlated Factors and one General Second-Order Factor. | Model | χ^2 | df | $\Delta \chi^2$ | Δdf | RMSEA | Δ RMSEA | CFI | ΔCFI | NNFI | ΔNNFI | |--------------|---------------|-----------|-----------------|------------------|-----------------|---------------------|--------------|---------|------|-------| | | | | N | leasuren | nent invarianc | e across countri | ies | | | | | Model 1 | 1727.5 | 372 | | | .049 | | .99 | | .99 | | | Model 2 | 1812.6 | 393 | 85.1 | 21 | .049 | .000 | .99 | .00 | .99 | .00 | | | | | N | A easurer | nent invariand | ce across sample | es | | | | | Model 1 | 1536.7 | 372 | | | .046 | | .99 | | .99 | | | Model 2 | 1603.6 | 393 | 66.9 | 21 | .045 | .001 | .99 | .00 | .99 | .00 | | Notes: Model | I= Multiple-g | roup Base | line Model | : Model 2 | = Three correla | ited factors and or | ne general i | factor. | | | (Model 1) fit the data very well, both across countries and type of sample. When equality constraints were placed on the factor loadings (Model 2), there was no significant decrement in goodness of fit, suggesting that the measures were invariant across country (Spain vs. Colombia) and type of sample (undergraduates vs. online). In both cases, all criteria recommended by Cheung and Rensvold (2002) and Chen (2007), except the chisquare test, were met. Specifically, the χ^2 diff tests were statistically significant across countries, $\chi^2_{(21)} = 85.1$, p < .01, and across type of sample ($\chi^2_{(21)} = 66.9$, p < .01), and the differences in RMSEA were lower than .01, and the differences in CFI and NNFI were higher than -.01. Given the sensitivity of the chi-square test to sample size, we can assume that measurement invariance was broadly met in both cases. Table 4 shows that Cronbach's alphas (internal consistency) of the complete DASS-21 were excellent with alpha values from .92 to .95. Alphas for the subscales were good, with the Depression subscale showing higher values (from .86 to .92) than the Anxiety (from .80 to .87) and Stress subscales (from .80 to .86). | | Table 4. Cronbach's A | Alphas and Descri | ntive Data for | Each Sample. | |--|-----------------------|-------------------|----------------|--------------| |--|-----------------------|-------------------|----------------|--------------| | | | DASS-21 Total | Depression | Anxiety | Stress | |------------------------------------|-------|---------------|------------|---------|--------| | | Alpha | .93 | .87 | .84 | .81 | | Sample 1: Spanish undergraduates | M | 17.66 | 4.80 | 4.79 | 8.07 | | | SD | 12.04 | 4.60 | 4.39 | 4.60 | | | Alpha | .92 | .86 | .80 | .80 | | Sample 2: Colombian undergraduates | M | 20.30 | 5.58 | 5.78 | 8.94 | | | SD | 12.26 | 4.75 | 4.44 | 4.55 | | | Alpha | .95 | .92 | .87 | .86 | | Sample 3: Online Spain | M | 14.68 | 4.42 | 3.53 | 6.74 | | | SD | 11.93 | 4.73 | 4.03 | 4.46 | | | Alpha | .93 | .87 | .80 | .83 | | Sample 4: Online Colombia | M | 19.36 | 5.40 | 5.44 | 8.52 | | | SD | 12.48 | 4.79 | 4.38 | 4.70 | | | Alpha | .93 | .88 | .83 | .83 | | Overall Sample | M | 18.03 | 5.08 | 4.89 | 8.06 | | • | SD | 12.39 | 4.75 | 4.39 | 4.66 | #### DISCUSSION The DASS-21 is a widely used scale to measure emotional symptoms, which was designed to maximize the discrimination between symptoms of depression and anxiety. However, factor analysis of the DASS-21 has yielded several factor structure models. Overall, the three-factor model showed good fit across different studies, but several alternative factor models have been suggested, including a correlated two-factor model with Depression and Stress or Anxiety and Stress items loading on the same factor. Nonetheless, a logical hierarchical structure with three first-order factors and a second-order factor has been deficiently explored using a CFA methodology because this model is mathematically identical to a correlated three-factor model. In this study, we tested the goodness-of-fit of five alternative factor models using CFA in Spanish and Colombian samples. In view that the solution of the correlated three-factor model with a general, second-order factor produces the same goodness-of-fit as the correlated three-factor model (Brown, 2015), we computed the Schmid-Leiman transformation following an EFA methodology to analyze the proportion of variance accounted for by the general factor and loadings of each item on this factor. A secondary aim of this study was to extend the available data regarding the psychometric properties of the DASS-21 in Spain and Colombia. The results of this study provide strong evidence that the Spanish version of the DASS-21 has good internal consistency and possesses a hierarchical factor structure consisting of three first-order factors (Depression, Anxiety, and Stress) and one second-order factor (Emotional Symptoms) in Spain and Colombia. This finding has several relevant implications. On the one hand, the presence of a general factor provides a theoretical rationale for using the total score of the DASS-21 as a general measure of emotional symptoms. This score provides a general measure of emotional symptoms and not the mere aggregation of the three types of symptoms. On the other hand, the presence of a second-order factor provides more flexibility to researchers and practitioners because they can choose between separating responses in the DASS-21 in the three types of symptoms (depression, anxiety, and stress) or summarizing them in an overall measure of emotional symptoms. Some limitations of this study are worth mentioning. Firstly, the functioning of the DASS-21 was tested only in nonclinical samples; therefore, further research is necessary in clinical samples to confirm the results obtained in this study. Secondly, we tested the factor structure of the DASS-21 only in two Spanish-speaking countries so that further studies are necessary to extend these findings to other Spanish-speaking countries. Thirdly, the results of this study are only applicable to the samples analyzed; hence, further studies might analyze whether the hierarchical factor structure of the DASS-21 is applicable to other languages and cultures. In conclusion, the DASS-21 seems to be a reliable measure of emotional symptoms in Spanish and Colombian samples, consisting of a hierarchical factor structure with one general factor and three first-order factors. The DASS-21 provides researchers and clinicians with the option to investigate specific types of emotional symptoms and provides a theoretically meaningful reason for the use of the total score as a general measure of emotional symptoms. #### REFERENCES - Agudelo DM, Gómez Y, & López P (2014). Propiedades psicométricas del Inventario de Depresión Estado Rasgo (IDER) con una muestra de población general colombiana. *Avances en Psicología Latinoamericana*, 32, 71-84. Doi: 10.12804/apl32.1.2014.05 - Alonso J, Angermaryer JC, Bernert S, & Bruffaerst T (2004). 12-month comorbility patterns and associated factors in Europe: Results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. *Acta Psychiatrica Scandinavica*, 109 (Supl. 420), 28-37. Doi: 10.1111/j.1600-0047.2004.00328.x - Antony MM, Bieling PJ, Cox BJ, Enns MW, & Swinson RP (1998). Psychometric properties of the 42-item and 21-item versions of the Depression Anxiety Stress Scales (DASS) in clinical groups and a community sample. Psychological Assessment, 10, 176-181. Doi: dx.doi.org/10.1037/1040-3590.10.2.176 - Antúnez Z & Vinet EV (2012). Escalas de depresión, ansiedad y estrés (DASS-21): Validación de la Versión abreviada en Estudiantes Universitarios Chilenos. *Terapia Psicológica*, 30, 49-55. Doi: 10.4067/S0718-4082012000300005 - Arrieta K, Díaz S, & González F (2013). Síntomas de depresión, ansiedad y estrés en estudiantes de odontología: prevalencia y factores relacionados. Revista Colombiana de Psiquiatría, 42, 173.-181. Doi: 10.1016/S0034-7450(13)70004-0 - Beuke C, Fischer R, & McDowall J (2003). Anxiety and depression: Why and how to measure their separate effects. Clinical Psychology Review, 23, 831-848. Doi: 10.1016/S0272-7358(03)00074-6 - Brown TA (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: The Guilford Press. - Chen FF (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. *Structural Equation Modeling: A Multidisciplinary Journal*, 14, 464-504. Doi: 10.1080/10705510701301834 - Cheung GW & Rensvold RB (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. *Structural Equation Modeling: A Multidisciplinary Journal*, 9, 233-255. Doi: 10.1207/S15328007SEM0902_5 - Daza P, Novy DM, Stanley M, & Averill P (2002). The Depression Anxiety Stress Scale-21: Spanish translation and validation with a Hispanic sample. Journal of Psychopathology and Behavioral Assessment, 24, 195-205. Doi: 10.1023/A:1016014818163 - Duffy CJ, Cunningham EG, & Moore SM (2005). Brief report: The factor structure of mood states in an early adolescent sample. *Journal of Adolescence*, 28, 677-680. Doi: 10.1016/j.adolescence.2005.08.013 - Fonseca Pedrero E, Paino M, Lemos Giráldez S, & Muñiz J (2010). Propiedades psicométricas de la *Depression Anxiety and Stress Scale*-21 (DASS-21) en universitarios españoles. *Ansiedad y Estrés, 16*, 215-226. - Gignac GE (2007). Multi-factor modeling in individual differences research: Some recommendations and suggestions. Personality and Individual Differences, 42, 37-48. Doi: 10.1016/j.paid.2006.06.019 - Gorsuch RL (1983). Factor analysis (2nd Ed.). Hillsdale, NJ: Erlbaum. - Herzberg KN, Sheppard SC, Forsyth JP, Credé M, Earleywine M, & Eifert GH (2012). The Believability of Anxious Feelings and Thoughts Questionnaire (BAFT): A psychometric evaluation of cognitive fusion in a nonclinical and highly anxious community sample. *Psychological Assessment*, 24, 877-891. Doi: 10.1037/a0027782 - Hu L & Bentler PM (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling*, 6, 1-55. Doi: 10.1080/10705519909540118 - Jiménez JA, Bojórquez CI, Blas GC, Landa VV, & Caraveo AJ (2005). Panorama del trabajo de investigación en epidemiología psiquiátrica en México: últimos 30 años. *Salud Mental*, 28, 70-78. - Jöreskog KG & Sörbom D (1999). LISREL 8.30. Chicago: Scientific Software International. - Kelloway EK (1998). *Using LISREL for structural equation modeling: A researcher's guide*. Thousand Oaks, CA: Sage. Kline RB (2005). *Principles and practice of structural equation modeling*. New York: The Guilford Press. - Lorenzo Seva U & Ferrando P (2006). FACTOR: A computer program to fit the exploratory factor analysis model. Behavior Research Methods, 38, 88-91. Doi: 10.3758/BF03192753 - Lovibond PF & Lovibond SH (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. *Behaviour Research and Therapy*, *33*, 335-343. Doi: 10.1016/0005-7967(94)00075-U - Mineka S, Watson D, & Clark LA (1998). Comorbidity of anxiety and unipolar mood disorders. *Annual Review of Psychology*, 49, 377-412. Doi: 10.1146/annurev.psych.49.1.377 - Norton PJ (2007). Depression Anxiety and Stress Scales (DASS-21): Psychometric analysis across four racial groups. Anxiety, Stress, and Coping, 20, 253-265. Doi: 10.1080/10615800701309279 - Rodríguez B, Bruce S, Pagano M, Spencer M, & Keller M (2004). Factor structure and stability for the Anxiety Sensitivity Index in a longitudinal study of anxiety disorder patients. *Behavioral Research and Therapy*, 24, 1-8. Doi: 10.1016/S0005-7967(03)00074-3 - Schmid J & Leiman JN (1957). The development of hierarchical factor solutions. *Psychometrika*, 22, 53-61. Doi: 10.1007/BF02289209 - Tabachnick BG & Fidell LS (2007). Using multivariate statistics. Boston: Allyn and Bacon. - Tully PJ, Zajac IT, & Venning AJ (2009). The structure of anxiety and depression in a normative sample of younger and older Australian adolescents. *Journal of Abnormal Child Psychology*, 37, 717-726. Doi: 10.1007/s10802-009-9306-4 - Wolf HG & Preising K (2005). Exploring item and higher order factor structure with the Schmid-Leiman solution: Syntax codes for SPSS and SAS. *Behavior Research Methods*, 37, 48-58. Doi: 10.3758/BF03206397. Received, June 11, 2016 Final Acceptance, October 30, 2016